Tutorial 1

1. Combinatorial games.

Recall that a game is called a combinatorial game if it satisfies the following

axioms.

(i) There are 2 players.

(ii) There are finite many possible positions.
(iii) The players take turns to make moves.

(iv) Perfect information, i.e. both players know the rules and the possible

moves of the other player.
(v) The game ends in a finite number of moves without a draw.
A combinatorial game is said to be impartial if at any position, both players

have the same possible moves.

Example 1. Chess (if draws are not allowed) is a combinatorial game but

it 18 not impartial.

From now on, we only consider impartial combinatorial games.

Example 2. The following games are (impartial) combinatorial games.
(i) One-pile take away game.

(ii) Two-pile take away game.

(#1) Subtraction.

(iv) Nim.

(v) Nimber.

Example 3. The following games are not combinatorial games.

(i) Poker.



(ii) Rock-paper-scissors.
(7ii) Tic-tac-toe.

Note. In poker, there is no perfect information. The second game does not

satisfy axiom (ii). In a game of tic-tac-toe, it is possible to get a draw.

. Solving combinatorial games.
Winning strategy: a strategy of a player that guarantees a win.
The following result is our starting point of studying combinatorial games.

Theorem 1. (Zermelo). In any combinatorial game, exactly one of the

players has a winning strategy.

Now we may understand the problem of solving a combinatorial game as
determining which player has a winning strategy at a given position. To do

this, we need to introduce two core concepts.
N-positions and P-positions.

N-position: a position at which the player who is about to move has a

winning strategy.

P-position: a position at which the player who just moved has a winning

strategy.

Characterization of N-positions and P-positions:

(i) All terminal positions are P-positions.

(ii) From every P-position, any move can only reach an N-position.

(iii) From every N-position, there exists at least one move to a P-position.
Note. 1. By the above characterization, the player who reaches a P-position

has a winning strategy, i.e. keeping staying in P-positions. We call a move

form an N-position to a P-position a winning move.



2. The above characterization also provides an algorithm to find all P-

positions, i.e. backwards induction.

Exercise 1. (Subtraction game). There is a pile of chips on the table. In
each turn, a player removes 2 or 3 chips. The game ends when there are

no possible moves and the player who makes the last move wins.
(i) Find all P-positions.

(#i) Find all winning moves from the position that there are 2019 chips.

Solution: (i). The set of terminal position is {0,1}. By the characteriza-

tion of N-positions and P-positions, we have by backwards induction,
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Let
P={keN:k=0or 1(mod5)}.

We claim that P is the set of all P-positions. Proof of the claim: (1). Clearly
the terminal positions 0 and 1 are in P. (2). If k € P, then we have k —2 =
3 or 4(mod5) and k — 3 = 2 or 3(mod5), hence k —2 ¢ P and k — 3 ¢ P.
(3). If k ¢ P, then k = 2(mod5) or k = 3(mod5) or k = 4(mod5), in each
case, we have either K —2 = 0 or 1(mod5) or k —3 =0 or 1(mod5), hence
either k — 2 € P or k — 3 € P. By the characterization of P-positions, we

complete the proof.

(ii). Clearly 2019 = 4(mod5) is an N-position and the only winning move
from 2019 is removing 3 chips to reach 2016.

3. Nim.



Model: suppose there are n piles of chips on the table. A move consists
of choosing one pile and removing arbitrary positive number of chips from

this pile. The player who makes the last move wins.
Let P denote the set of P-positions.
Theorem 2. P = {(zy, -+ ,x,) 101D -+ Dz, =0}
Exercise 2. Consider 3-pile nim. Find all winning moves from position
(9,8,7).
Solution: Note that

(1,0,0,1),

1,0,0,0
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0,1,1,0), =6

Hence (9,8,7) is an N-position. The only wining move is (0,1,1,1)y —
(0,0,0,1)2 = 1. In other words, the only winning move is removing 6 chips

from the third pile.

There are combinatorial games which can be reduced to the nim games.

The following is such an example.

Example 4. (Nimble) Suppose there is a line of squares labeled 0,1,2,- - .
A finite number of coins are placed on the squares with possibly more than
one coin on a single square. See Figure 1 for an example. A move consists
of taking one of the coins and moving it to any square to the left. The player

who makes the last move wins.

Analysis: Note that if we view each coin in the k-th square as a pile of k
chips. Then moving a coin from the k-th square to the j-th square (j < k)

is equivalent to removing k£ — j chips from the pile of k chips that this coin
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Figure 1

represents. Hence we can reduce nimble to nim. For example, the nimble

in Figure 1 is equivalent to a 5-pile nim with position (1,1, 3,4, 4).

Exercise 3. Consider the nimble in Figure 1. Is the position a P-position?

If it is not a P-position, find all winning moves.

Solution: By the above analysis, we know that the nimble in Figure is

equivalent to the 5-pile nim (1,1, 3,4,4). Note that

l1ole3d4d4=

2 =3

Hence the position is an N-position. It is easy to see the only winning move

from this position is moving the coin in the square 3 to the square 0.



